Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
bioRxiv ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38496531

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is one of the key regulators of the cAMP/PKA signaling pathway. However, the precise molecular mechanisms underlying the sAC-mediated signaling pathway and mitochondrial protection in RGCs that counter oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress, we found that activating sAC protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death in a paraquat oxidative stress model. Notably, sAC activation ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

2.
Cells ; 13(2)2024 01 21.
Article En | MEDLINE | ID: mdl-38275823

Glaucoma is a group of ocular diseases that cause irreversible blindness. It is characterized by multifactorial degeneration of the optic nerve axons and retinal ganglion cells (RGCs), resulting in the loss of vision. Major components of glaucoma pathogenesis include glia-driven neuroinflammation and impairment of mitochondrial dynamics and bioenergetics, leading to retinal neurodegeneration. In this review article, we summarize current evidence for the emerging role of apolipoprotein A-I binding protein (AIBP) as an important anti-inflammatory and neuroprotective factor in the retina. Due to its association with toll-like receptor 4 (TLR4), extracellular AIBP selectively removes excess cholesterol from the plasma membrane of inflammatory and activated cells. This results in the reduced expression of TLR4-associated, cholesterol-rich lipid rafts and the inhibition of downstream inflammatory signaling. Intracellular AIBP is localized to mitochondria and modulates mitophagy through the ubiquitination of mitofusins 1 and 2. Importantly, elevated intraocular pressure induces AIBP deficiency in mouse models and in human glaucomatous retina. AIBP deficiency leads to the activation of TLR4 in Müller glia, triggering mitochondrial dysfunction in both RGCs and Müller glia, and compromising visual function in a mouse model. Conversely, restoring AIBP expression in the retina reduces neuroinflammation, prevents RGCs death, and protects visual function. These results provide new insight into the mechanism of AIBP function in the retina and suggest a therapeutic potential for restoring retinal AIBP expression in the treatment of glaucoma.


Glaucoma , Toll-Like Receptor 4 , Mice , Animals , Humans , Toll-Like Receptor 4/metabolism , Neuroinflammatory Diseases , Glaucoma/metabolism , Retina/metabolism , Cholesterol/metabolism
3.
bioRxiv ; 2023 Dec 29.
Article En | MEDLINE | ID: mdl-37905114

Glaucoma is a neurodegenerative disease manifested in retinal ganglion cell (RGC) death and irreversible blindness. While lowering intraocular pressure (IOP) is the only proven therapeutic strategy in glaucoma, it is insufficient for preventing disease progression, thus justifying the recent focus on targeting retinal neuroinflammation and preserving RGCs. We have identified apolipoprotein A-I binding protein (AIBP) as the protein regulating several mechanisms of retinal neurodegeneration. AIBP controls excessive cholesterol accumulation via upregulating the cholesterol transporter ATP-binding cassette transporter 1 (ABCA1) and reduces inflammatory signaling via toll-like receptor 4 (TLR4) and mitochondrial dysfunction. ABCA1, TLR4 and oxidative phosphorylation components are genetically linked to primary open-angle glaucoma. Here we demonstrated that AIBP and ABCA1 expression was decreased, while TLR4, interleukin 1 beta (IL-1 beta), and the cholesterol content increased in the retina of patients with glaucoma and in mouse models of glaucoma. Restoring AIBP expression by a single intravitreal injection of adeno-associated virus (AAV)-AIBP protected RGCs in glaucomatous DBA/2J mice, in mice with microbead-induced chronic IOP elevation, and optic nerve crush. In addition, AIBP expression attenuated TLR4 and IL-1 beta expression, localization of TLR4 to lipid rafts, reduced cholesterol accumulation, and ameliorated visual dysfunction. These studies collectively indicate that restoring AIBP expression in the glaucomatous retina reduces neuroinflammation and protects RGCs and Muller glia, suggesting the therapeutic potential of AAV-AIBP in human glaucoma.

4.
Cells ; 12(11)2023 06 03.
Article En | MEDLINE | ID: mdl-37296658

A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.


Glaucoma , Retinal Ganglion Cells , Humans , Retinal Ganglion Cells/metabolism , A Kinase Anchor Proteins/metabolism , Neuroprotection , Glaucoma/metabolism , Retina/metabolism
5.
Curr Issues Mol Biol ; 45(2): 1287-1305, 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36826029

Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aß1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aß1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.

6.
Prog Retin Eye Res ; 95: 101136, 2023 Jul.
Article En | MEDLINE | ID: mdl-36400670

Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.


Glaucoma , Optic Nerve Diseases , Humans , Retinal Ganglion Cells/pathology , Mitochondrial Dynamics , Intraocular Pressure , Optic Nerve Diseases/etiology
7.
J Trop Med ; 2022: 6814901, 2022.
Article En | MEDLINE | ID: mdl-35371266

This study was aimed to determine the antibacterial activity of root bark, leaves, and pericarp extract of Diploknema butyracea and to evaluate the prospective antioxidant activity, total flavonoid, polyphenol, and carbohydrate content. The plant parts were collected and extracted by cold maceration, using hexane, ethyl acetate, methanol, and distilled water. Phytochemical screening of different samples of D. butyracea in different solvents revealed the presence of varied extent of alkaloid, saponin, terpenoid, anthraquinones, tannin, cardiac glycoside, flavonoid, carbohydrate, polyphenol, protein and amino acid, resin, and phytosterol. Our study showed that methanolic root bark extract exhibited the potent antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Klebsiella pneumonia with an average zone of inhibition of 17.33 mm, 14.33 mm, and 13.0 mm, respectively. Surprisingly, all of the extracts were insensitive to Escherichia coli. The lowest minimum bactericidal concentration (MBC), 4.6 mg/ml, was observed with the aqueous pericarp extract against S. epidermidis and the highest was of 50 mg/ml shown by ethyl acetate pericarp against K. pneumonia. Our results showed that both the polar and nonpolar components present in the different parts of D. butyracea exhibit prominent antibacterial activities against different bacterial strains. The in vitro 2,2'-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity showed that the methanol extract of root barks displayed the most potent antioxidant activity (IC50 : 6.1 µg/ml). The total polyphenol content of the plant part extracts was observed between 19.48 ± 0.23 and 123.48 ± 1.84 µg gallic acid equivalent/mg of dry extract weight. Likewise, flavonoid content ranged from 40.63 ± 1.28 µg to 889.72 ± 3.40 µg quercetin equivalent/mg of dry extract weight and total carbohydrate content ranged from 11.92 ± 0.60 µg to 174.72 ± 0.60 µg glucose equivalent per/mg dry extract weight. Overall, our study showed that the root bark, pericarp, and leaves extract of D. butyracea evinced prominent antibacterial properties against various pathogenic bacterial strains.

8.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35216503

Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Restoration of nigrostriatal dopamine neurons has been proposed as a potential therapeutic strategy for PD. Because currently used PD therapeutics only help relieve motor symptoms and do not treat the cause of the disease, highly effective drugs are needed. Vildagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, is an anti-diabetic drug with various pharmacological properties including neuroprotective effects. However, the detailed effects of vildagliptin against PD are not fully understood. We investigated the effects of vildagliptin on PD and its underlying molecular mechanisms using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model and a 1-methyl-4-phenylpyridium (MPP+)-induced cytotoxicity model. Vildagliptin (50 mg/kg) administration significantly attenuated MPTP-induced motor deficits as evidenced by rotarod, pole, and nest building tests. Immunohistochemistry and Western blot analysis revealed that vildagliptin increased tyrosine hydroxylase-positive cells in the SNpc and striatum, which was reduced by MPTP treatment. Furthermore, vildagliptin activated MPTP-decreased PI3k/Akt and mitigated MPTP-increased ERK and JNK signaling pathways in the striatum. Consistent with signaling transduction in the mouse striatum, vildagliptin reversed MPP+-induced dephosphorylation of PI3K/Akt and phosphorylation of ERK and JNK in SH-SY5Y cells. Moreover, vildagliptin attenuated MPP+-induced conversion of LC3B-II in SH-SY5Y cells, suggesting its role in autophagy inhibition. Taken together, these findings indicate that vildagliptin has protective effects against MPTP-induced motor dysfunction by inhibiting dopaminergic neuronal apoptosis, which is associated with regulation of PI3k/Akt, ERK, and JNK signaling transduction. Our findings suggest vildagliptin as a promising repurposing drug to treat PD.


Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Vildagliptin/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Cell Line, Tumor , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Pars Compacta/drug effects , Pars Compacta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
9.
Int J Mol Sci ; 18(3)2017 Mar 21.
Article En | MEDLINE | ID: mdl-28335557

Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-ß-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3ß). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3ß. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3ß induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3ß inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin.


3-Hydroxybutyric Acid/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Glucose/deficiency , Neuroprotective Agents/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Metformin/toxicity , Mice , Mice, Inbred ICR , Neurons/drug effects , Neurons/metabolism , Reactive Oxygen Species/metabolism
10.
Molecules ; 22(2)2017 Feb 06.
Article En | MEDLINE | ID: mdl-28178193

Neuroblastomas are the most common solid extracranial tumors in childhood. We investigated the anticancer effect of cearoin isolated from Dalbergia odorifera in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with various doses of cearoin. The viability was measured by MTT assay. DCFDA fluorescence assay and Griess assay were used for the measurement of intracellular reactive oxygen species (ROS) and nitric oxide (NO), respectively. Western blot analysis was performed to clarify the molecular pathway involved. Cearoin induced cell death in a dose-dependent manner. Cearoin increased the phosporylation of ERK, the conversion of LC3B-I to LC3B-II, decrease in Bcl2 expression, the activation of caspase-3, and the cleavage of PARP, indicating the induction of autophagy and apoptosis. Furthermore, cearoin treatment increased the production of ROS and NO. Co-treatment with the antioxidant N-acetylcysteine completely abolished cearoin-mediated autophagy, ERK activation and apoptosis, suggesting the critical role of ROS in cearoin-induced anticancer effects. Moreover, co-treatment with ERK inhibitor PD98059 partially reversed cearoin-induced cell death, indicating the involvement of ERK in cearoin anticancer effects. These data reveal that cearoin induces autophagy, ERK activation and apoptosis in neuroblastoma SH-SY5Y cells, which is mediated primarily by ROS generation, suggesting its therapeutic application for the treatment of neuroblastomas.


Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dalbergia/chemistry , Enzyme Activation/drug effects , Humans , Neuroblastoma/metabolism , Nitric Oxide/metabolism , Phosphorylation/drug effects , Plant Extracts/chemistry
...